Wednesday, June 12, 2024

EV's, Virginia and Me

My husband is taking the Acura in for service. It is displaying a service and maintenance code, so it needs attention. The Acura is 17 years old, though it only has only about 95,000 miles. Still, the time is coming to replace the vehicle. The question is with what.

Last week Governor Youngkin announced the end of the California electric vehicle mandate in Virginia, effective at the end of 2024 when California’s current regulations expire. An official opinion from Attorney General Jason Miyares was that under the existing law Virginia is not required to comply with the new mandates called Advanced Clean Cars II adopted by the California Air Resources Board (CARB) set to take effect January 1, 2025.  

Under Advanced Clean Cars II, beginning in Model Year 2026, 35% of the new cars sold are required to be electric vehicles, moving up to 100% in 2035. If an auto manufacturer sells a gas powered automobile, they may be required to pay a fine upwards of $20,000 per vehicle sold. Given that EVs were only 9% of vehicles sold in Virginia in 2023 this could have resulted in hundreds of million of dollars in penalties- that would have served to increase the costs of cars for Virginians.

Nonetheless, the Federal Government has set a goal to make half of all new vehicles sold in the U.S. in 2030 zero-emissions vehicles. So, is it time for us to consider an EV? Today, transportation is the largest source of energy-related CO2 emissions in the U.S.  It could make a big difference in my personal carbon emissions, but EV adoption has the potential to drastically impact our local power grid along with the proliferation of data centers in our region that have already stretched the grid. Dominion Energy in Virginia predicts that by 2035 the data center industry in Virginia will require 11,000 megawatts from them, nearly quadruple what it needed in 2022, or enough to power 8.8 million homes. Northern Virginia Electric Cooperative recently told PJM that the more than 50 data centers it serves account for 59% percent of its energy demand. It expects to need to serve about 110 more data centers by July 2028. Virginia still must meet the requirements for carbon reduction in electricity generation in the VCEA

In their most recent IRP Dominion Energy forecast that EV adoption will have its greatest impact on summer peak load because EV owners are expected to be charging their vehicles at the end of the day when summer peaks occur. Dominion forecast that in 2037, the estimated contribution to summer peak from EV charging will be approximately 358 MW or 6.4% of peak summer demand. While the Virginia power mix has been migrating away from coal and towards natural gas, nuclear and renewables, Virginia does not generate enough power to supply our current and growing need for power. The shortfall in power is supplied by PJM generation coming predominantly from West Virginia and Pennsylvania which are generating this excess power by coal and gas. During peak periods there may not be enough power to charge an EV overnight. 


from Dominion IRP 2023 update


Charging and range anxiety are the big day to day issues. The most obvious is the problem of charging EVs. I am not willing to plan my life around finding a charging station and waiting around for the battery to top up. During the Arctic blast last winter, we all watch the images of EV’s taking much longer to get a full charge or failing to charge all together in Chicago. Despite the IRA mandate to build a “convenient and equitable network” of 500,000 chargers to help make EVs accessible for both local and long-distance trips, I apparently live in the EV charging desert and would need to install a level II charger in my home to use an EV.  The only charging stations I know of is 8 miles from home or at the County Complex 26 miles away.

from Alternative Fuels Data Center: Alternative Fueling Station Locator (energy.gov)

While bigger batteries allow drivers to travel farther between charges and that has been the trend, they also make the cars heavier, more dangerous, more expensive, and more expensive to insure.  EV batteries aren't cheap and the bigger the battery the more expensive, reportedly costing up to $20,000 to replace. So effectively, the life of the batter is the life of the vehicle. It is widely reported that most EV batteries last between 10 and 20 years. The problem is the Tesla debuted in 2010 as did the Nissan leaf, so there is not a lot of real-world experience with this number. The lifetime of the vehicle is important to us, since we tend to keep our vehicles for their full lifetime. The difference between 10 and 20 years in a battery’s lifetime is huge in our cost of driving.

Battery chemistry, driving habits, environmental conditions and maintenance practices all affect EV battery life. My experience with phone and computer batteries is only a handful of years before they no longer hold a charge long enough to be effective tools. That is how batteries fail- they loose a little bit of their capacity each year.  An EV would require me to be a nursemaid to my battery. Keeping the EV away from extreme temperatures and not over charging the battery. EV’s  generally allow you to set the extent of the charge; Tesla recommends not to regularly charge the battery beyond 80% of the battery's capacity to maximize battery lifespan. The phone repair shop told me the same thing. Tesla says that charging to 100% is okay for long trips and is more convenient in those situations.

Insurance rates for EV's are also higher. The Wall Street Journal reported that the average repairable insurance claim for an EV was 30% higher than an equivalent internal combustion engine vehicle. Insurance rates on automobiles have also more than doubled in recent years and that makes the situation worse. I called my insurance company to check the price to insure a new EV and was simply shocked, though insuring any new vehicle is rather shocking. 

Total  EV’s in the Commonwealth (as of June 2024) were 78,694 out of 8.4 million cars- less than 1%.  At least right now we do not have the infrastructure to support this transition outside of Fairfax and Loudoun Counties and Richmond. It is not just the lack of charging stations, but the additional cost of the vehicle and  higher insurance. Also, my husband is concerned about fire. He does not want a massive lithium ion battery in a garage attached to our house.  He still wants a fuel cell vehicle, and there are no fuel cell stations in the Commonwealth. I am not making blue hydrogen in the backyard though he suggested that might be a nice hobby for me. This does not look like our EV moment. 


Work was done a couple of years ago to calculate the emissions vehicle manufacturing and then the operational carbon footprints. On average the groups found that it takes about 40% more carbon dioxide emissions to manufacture an EV rather than an internal combustion vehicle.  In addition the carbon the batteries contain rare earth metals like cobalt and lithium. The mining process is hazardous to the environment and the workers especially in other countries. The batteries also have a large water footprint.  EVs produce no tailpipe emissions when they are used. No smog, no NOx, nothing to pollute the air. Gas cars produce a lot of tailpipe emissions. Overall it was calculated. it takes about 20,000-23,000 miles of driving to make up for the manufacturing deficit. For us that would be about 4 years of driving before the purchase of an EV would have a positive impact on our planet. We do have a newer and lower milage vehicle driven mostly locally (except recently as I hesitate to drive long distances in our old Acura)- though 10 years old it has around 40,000. The smaller vehicle may be our EV in the future. We'll see. 


No comments:

Post a Comment