Wednesday, May 24, 2023

My Well Test Results

While the U.S. Environmental Protection Agency (EPA) regulates public water systems, the responsibility for ensuring the safety and consistent supply of water from a private well belongs to the well owner-in this case me. I test my well water at least annually. An easy way to do this is to participate in the annual Virginia Tech Extension Virginia Household Water Quality Program

Last Friday the Household Water Quality Program emailed me my water analysis from the sample taken as part of their well water clinic. This is what I saw when I opened my attachment: 

None of the chemicals or bacteriological indicators that they tested for were found to be in excess of the U.S. EPA safe drinking water recommended limits. All good. In addition to the 14 contaminants they normally report, their instrument that analyzes metals and elements returns data for 14 additional contaminants, many of which are rarely found in well water, that Virginia Tech screens for and provides a supplemental report to people only if found in levels higher than recommended for drinking water. None of those contaminants were found to be elevated in my water samples.

Last year they found trace levels of lead in the first draw sample from a bathroom sink at 0.005 mg/L gave me pause, it was a little higher the year before that at the same sink. The flush sample did not find any lead, it was “non detect,” ND. While this was all within the EPA safe drinking water limits, I do not believe that there is a safe level of lead.

The presence of lead in water that sits for several hours or overnight generally comes the pipes and fixtures and becomes a bigger problem the older the pipes and fixture become. Over time older pipes and fixtures corrode or simply wear away and the lead and other corrosion material (like rust) is carried to the drinking water. Time and water do cause corrosion, but this can be aggravated by the pH of the water or other changes in water chemistry. The amount of lead corroded from metal plumbing generally increases with water corrosiveness.

My water is neutral, I have plastic pipes in the house. It is possible to see traces of lead because there is lead and copper in the well equipment, pressure tank fittings and faucets. Until 2014 when the 2011 Reduction of Lead in Drinking Water Act went into effect, almost all drinking water fixtures were made from brass containing up to 8% lead, even if they were sold as "lead free." Homes built with PVC piping in the 2000's may have some lead in most of the faucets.

Also, before 2014 Prime Western grade “lead free” galvanized steel zinc coating was required to contain between 0.5%-1.4% lead. After 2014, “lead free” galvanized steel must have less than 0.25% lead in the surface coatings. My galvanized steel well casing was installed in 2004. Over time, even under neutral condition, any lead used in coatings can be released to the water and pumped to the household tap or accumulate in scale layers on the pipe surface or well bottom where scale can accumulate and be released or picked up and pumped with the water.

Since 2018 I have been replacing all the faucets in the house, starting with the ones we use for cooking or drinking. There is little I can do about the galvanized steel casing on the well at this point.  The brass fittings on pressure tanks and pitless adaptors are now available with less then 0.25% lead and were replaced in 2020. Last year’s results suggested to me that the faucet might be the source- so it got replaced and this year we did not detect lead. Problem solved.

I test my drinking water every year to make sure it is safe to drink.  When we bought our home I tested the well for all the primary and secondary contaminants in the Safe Drinking Water Act as well as a suite of metals and pesticides using a certified laboratory. I wanted a comprehensive baseline. Still, I did not test for everything, nobody could afford to (I think there are 80,000 or more known chemicals). At the time I did not test for PFAS it was not part of the Safe Drinking Water Act and the tests available at the time were much less sensitive than is available today.

I test the well to make sure that the well was drawing from a groundwater aquifer that was not contaminated. While you can treat, you cannot really "fix" groundwater.  In addition, I wanted a well that was fine without any need for water treatment to address naturally occurring contaminants. Initially, I tested for Bacteria (Total Coliform and E-Coli), 19 heavy metals and minerals including lead, iron, arsenic and copper (many which are naturally occurring, but can impact health); 6 other inorganic compounds including nitrates and nitrites (can indicate fertilizer residue or animal waste this was once a cattle operation); 5 physical factors including pH, hardness, TDS, alkalinity; 4 Trihalomethanes (THMs) and 47 Volatile Organic Chemicals (VOCs) including Benzene, Methyl Tert-Butyl Ether (MTBE) and Trichloroethene (TCE). Organochlorine pesticides, herbicides and PCBs. Finally, I tasted the water.

I do not have any treatment equipment in the house, so I was able to do only one set of water tests. When you test your well, always test the raw water so that you know what you are buying, and test the water after any treatment to make sure the treatment equipment is working properly. What you can live with in terms of water treatment equipment is really a personal decision. I preferred to have water that did not need of any treatment and was a little hard because I like the taste of hard water. When the test is more widely available, I will be testing for PFAS. For now, though, a good sign is that Prince William Service Authority did not find any PFAS in their Evergreen water system which like my home draws from groundwater wells in the Culpeper basin. That is not a guarantee given the distance to their well heads from my house, its all I’ve got right now. There is always something to look for. 

No comments:

Post a Comment